

ANALYSIS AND DESIGN OF NOVEL ABSORPTION POWER CYCLE PLANTS

(ES2016-59272)

Vaclav Novotny*, Michal Kolovratnik*, Monika Vitvarova*, Jana P. Jakobsen*

* Department of Energy Engineering, Faculty of Mechanical Engineering, CTU in Prague, Czech Republic

+ Sintef ER, Norway

ASME 2016 10th International Conference on Energy Sustainability Charlotte, 30.6.2016

Outline

- Waste heat recovery features and issues
- Absorption power cycles
 - General principles
 - Thermodynamic models + results
 - Components design
- Future planned and intended work
- Conclusion

Waste heat recovery options

• ORC

- Industrial standard, robust, reliable
- But
 - High irreversibility in heat exchangers
 - Negative effect growing with lowering heat source temperature
 - Result is very low efficiency, hardly economical application

Ideal WHR cycle

Ideal Rankine cycle

Waste heat recovery options

Solutions?

- Variable boiling point use of (zeotropic) mixture as working fluid – lowering irreversibility by temperature match of hot and cold fluid due to temperature glide
- Supercritical state of working fluid no boiling point,
 specific fluid for specific temperature
- Cascading of multiple cycles, multiple pressure systems
- Trilateral cycle with expansion from saturated liquid
 - All mostly in research or only limited commercialization

Absorption chiller cycle vs. Absorption power cycle

- Working fluids enabling temperature glide of boiling point
- Range of possible working fluids especially for cooling cycles
 - Cooling cycles LiBr H2O, NH3-H2O (commercial), other salts, ionic liquids – refrigerants mixtures
 - Power cycles previous work limited to NH3-H2O, only few theoretical works about different working fluids, theoretically range should be same or larger than for cooling, should not be so limited by freezing problems

LiBr solution absorption power cycle

- operation principle

0,2

0,4

L [-]

0,6

0,8

0,2

L [-]

8.0

LiBr absorption power cycle

- features

- Once through counterflow HXs for high exergy efficiency
- Separator of liquid and vapour (Compared to typical chiller with pool boiling and solution circulation in absorber)
- Similarly to absorption cooling whole cycle under vacuum conditions
- Vapour is supposed to be free of LiBr and after separation is superheated
 - Low pressure allows high efficiency turbine (but bulky)
 - Working fluid handling mostly known from chillers
- Potential issues
 - Vacuum in whole working fluid area
 - Corrosion from the solution
 - Temperature glide HXs not proven

Thermodynamic models

- Steady state based on heat and mass transfer
- Performance optimized for utilization efficiency
- Comparison made between
 - Kalina cycle (NH3-H2O)
 - Salt aqueous solution absorption cycles –LiBr, CaCl2,
 LiCl
 - Steam cycle
 - Organic Rankine cycles

Thermodynamic models -assumptions & boundary conditions

- Heat source is pressurized water, explored range 60-160°C
- Heat rejection by fan cooling tower or air cooled condenser
- Neglected pressure losses, condensate subcooling
- Working fluid in every node in thermodynamic equilibrium
- Experimental corelations of working fluid properties
- Other:

T_{DB}	T_{WB}	Pamb	RH_{air}	H_{eq}	η_{turb}	Approach
[°C]	[°C]	[kPa]	[%]	[m]	[%]	[°C]
25	21	100	70	15	80	5
η_{pump}	$\Delta T_{min,cond}$	Δp_{CT}	RH _{CT,out}	$\Delta T_{min,hs}$	Δp_{ACC}	η_{fan}
[%]	[°C]	[Pa]	[%]	[°C]	[Pa]	[%]
70	5	95	100	10	150	70

Results of maximal efficiency points

(a) cooling tower (b) air cooled condenser

Heat source temperature [°C]

Heat source temperature [°C]

Components design (LiBr APC)

Pump

except for corrosion resistance minimal requirements

Desorber

- Heat exchanger of counterflow design
- Heat transfer calculated from flow boiling corelations
- Actual behaviour of temperature glide, especially for these application not well documented – under planning for experimental validation

Separator

- In first approach can be followed geothermal separator design
- High requirement on droplets elimination limit LiBr salt to turbine
- High requirement on low pressure drop

Components design (LiBr APC)

Absorber

- Heat exchanger of counterflow design
- Complicated physical process of absorption
 - Absorption takes place at a film interface between vapour and liquid
 - Simultanious heat and mass transfer problem
 - Literature proposes several methods with limited success from experiments
 - For innitial design chosen constant mass transfer coefficient from temperature driving force, absorption over large concentration range will have to be validated experimentally

Turbine

- In principle a standard steam turbine
- Steam paremeters allow use of single/multi stage axial turbine, design includes most of losses
- For detailed design will have to be solved seals / hermetic design

Recuperative solution HX

• Simple HX design, for given APC only small amount of recuperated heat

Conceptual design results - 100°C heat sources

20 kW unit with hot air heat source and air cooled condensation

_	Turbine inlet temperature	90	°C
-	Turbine inlet pressure	12.54	kPa
-	Turbine outlet temperature	23.5	°C
-	Turbine outlet pressure	2.90	kPa
-	Absorber inlet temperature	56.3	°C
_	Absorber outlet temperature	32.8	°C

500 kW unit with hot water heat source and wet cooling tower

-	Turbine inlet temperature	90	°C
-	Turbine inlet pressure	16.44	kPa
-	Turbine outlet temperature	27.7	°C
_	Turbine outlet pressure	3.71	kPa
_	Absorber inlet temperature	53.5	°C
-	Absorber outlet temperature	32.0	°C

Conceptual design results

- 100°C heat sources

component/case		$0~\mathrm{kW}_e$ unit	500 kW	e unit	component/ca	ise	20 kW _e unit	500 kW _e	unit
Desorber	m_{hs}	13.93	70.8	kg/s	Recuperator	A	0.17	2.1	m^2
(Shell&Tube)	m_{wf}	0.45	6.85	kg/s	(pipe in pipe)	D_{iner}	12.8x2	34.6x2	mm
	$A_{boiling}$	137	159	m^2		D_{outer}	19.5	69	mm
1	$A_{preheat}$	1.5	4.6	m^2		Length	0.001	0.02	m
t	tubing	56x3	56x3	mm	Absorber	A	416	1933	m^2
t	tube count	38	586	-					
,	Tube spacing	g 0.130	0.075*	m	Separator	D_{in}	0.27	0.56	m
]	Length	22.9	1.7	m		$D_{vap,out}$	0.95	1.96	m
1	u_{out}	27.4	30.0	m/s		D_{sep}	1.4	2.89**	m
		177.5	172.1	Pa		height	2.5	5.1	m
	$\Delta p_{frict+accel}$	177.5	1/2.1	1 4		Δp	47.1	61.7	Pa

^{*} used baffles; ** 4 parallel unit to keep reasonable dimensions and pressure drop

Conceptual design results

- 100°C heat sources

Turbine highly efficient but bulky

Parameter	$20 \mathrm{kW}_e$ unit	$500 \mathrm{kW}_e$ unit	units
speed	9000	3000	rpm
Δh_{is}	209.8	214.8	kJ/kg
m_{vap}	0.154	3.390	kg/s
e	1	1	-
$u/c_{1is,1st-st}$	0.417	0.459	-
$u/c_{1is,2nd-st}$	0.463	0.470	-
$u/c_{1is,3rd-st}$	0.479	0.477	-
$l_{1,1st-st}$	0.036	0.186	m
$l_{1,2nd-st}$	0.050	0.278	m
$l_{1,3rd-st}$	0.078	0.431	m
$D_{mean,1st-st}$	0.332	1.097	m
$D_{mean,2nd-st}$	0.366	1.116	m
$D_{mean,3rd-st}$	0.369	1.139	m
η_{is}	79.8	84.2	%
η_{net}	73.5	80.0	%
W_{shaft}	25.6	618.8	kW
W_{net}	23.6	586.2	kW_e

Future work

- Detailed sizing and economic comparison with ORC
- Experimental validation
 - HXs actual temperature profile
 - Steam separation steam quality
- Investigation of alternative absorption pairs as working fluid
- Combined power and cooling cycle concept

Conclusion

- LiBr (or generally salt solution) APC power cycle has potential for utilization of low temperature ~ 100°C heat sources
- Theoretically better than ORC and Kalina cycle
- Design methodology proposed
- Bulky but efficient device
- Experimental validations of several assumptions needed and already planned

Questions?

Supported by Norway grants

Information about project NF-CZ08-OV-1-003-2015

www.czech-norway-pilotccs.com email: nfccs05@gmail.com