Cost comparison of technologies for pre-combustion CO₂ capture from an lignite-fired IGCC

Simon Roussanaly^{1,*}, Monika Vitarova², Rahul Anantharaman¹, David Berstad¹, Brede Hagen¹, Jana Jakobsen¹, Vaclav Novotny² and Geir Skaugen¹

¹ SINTEF Energy Research, Sem Sælandsvei 11, NO-7465 Trondheim, Norway
² Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Energy Engineering, Czech Republic

* Corresponding author e-mail: simon.roussanaly@sintef.no

Abstract:

Although solvent-based CO_2 capture is the most mature and demonstrated technologies for CO_2 capture, other emerging technologies such as membrane, cryogenic separation, precipitating solvents, and adsorption have the potential to significantly reduce costs in the long run [1]. CO_2 capture from an IGCC with solvent-based technology or the comparison of a specific emerging capture technology with solvents have been extensively studied, however no systemic cost-comparison of CO_2 capture technologies from an IGCC have been investigated.

This work will therefore present the cost-comparison for a lignite-based IGCC plant of three pre-combustion CO₂ capture technologies:

- 1) Rectisol-based CO₂ capture, a physical solvent that can be used to remove CO₂ and the H₂S present in the syngas in a staged removal process;
- 2) Membrane-based CO_2 capture which will consider the potential of both CO_2 selective membrane [2] and hydrogen selective membrane [3] processes;
- 3) Low-temperature CO_2 capture which is based on partial condensation and phase separation of liquid CO_2 from non-condensables [4].

The IGCC plant considered is based on a lignite input of 39 kg_{wet}/s, leading to a net power output of 279 MW for the plant without CO_2 capture. The syngas after the water gas shift is available at 28 bar and contain 29.2 $\%_{CO2,wet}$. A generic process flow diagram of the IGGC plant with CO_2 capture is provided in Figure 1 for the membrane-based and low-temperature based cases¹.

The results will present the energy performances of the IGCC with CO_2 capture using each of the three technologies, as well as the economic performances (Electricity production cost and CO_2 capture cost) taking into account the maturity differences between technologies maturity.

¹ It is worth noting that in the case of Rectisol-based CO₂ capture, the AGR unit is combined with the capture unit after the water gas shift units.

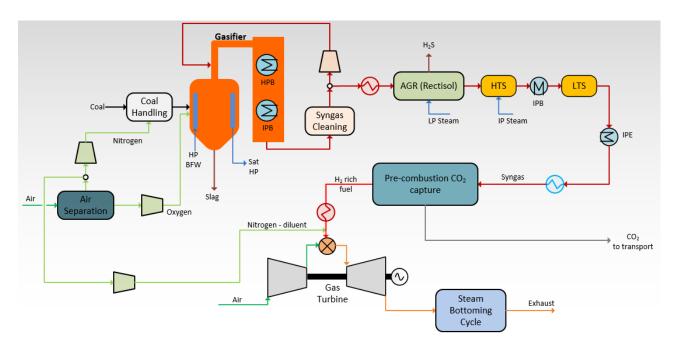


Figure 1: Generic Process Flow Diagram of the IGCC plant with CO₂ capture

Acknowledgments

This work is supported by the Norway grants, as part of the project NF-CZ08-OV-1-003-2015.

References

- [1] IEAGHG, Assessment of emerging CO2 capture technologies and their potential to reduce costs, 2014/TR4, in, 2014.
- [2] H. Lin, Z. He, Z. Sun, J. Kniep, A. Ng, R.W. Baker, T.C. Merkel, CO2-selective membranes for hydrogen production and CO2 capture Part II: Techno-economic analysis, Journal of Membrane Science, 493 (2015) 794-806.
- [3] P. Li, Z. Wang, Z. Qiao, Y. Liu, X. Cao, W. Li, J. Wang, S. Wang, Recent developments in membranes for efficient hydrogen purification, Journal of Membrane Science, 495 (2015) 130-168.
- [4] D. Berstad, S. Roussanaly, G. Skaugen, R. Anantharaman, P. Nekså, K. Jordal, Energy and Cost Evaluation of A Low-temperature CO2 Capture Unit for IGCC plants, Energy Procedia, 63 (2014) 2031-2036.