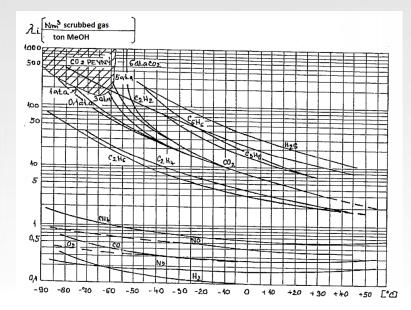


RECTISOL FOR CO2 CAPTURE

Václav Novotný, FME CTU in Prague

Norway Grants CZ08 Workshop 4. 11. 2015 Prague

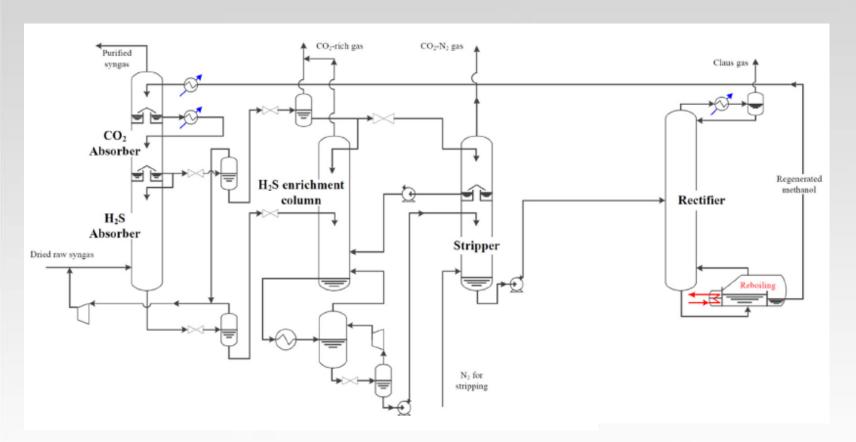
INTRODUCTION


CO2 capture in IGCC

- Suitable physical solvents (choice due to high CO2 content)
- In CCS-IGCC typically considered same method as for desulphurisation
- Several methods and solvents exist:
 - Selexol (dimethyl ether of polyethylene glycol)
 - In literature slightly favoured in energy demand
 - Rectisol (MeOH)
 - Cheap and commonly available solvent
 - Purisol (NMP)
 - Fluor Solvent (propylene carbonate)
 - Other
- Direct experience from Vřesová IGCC plant determined use of Rectisol system (at least for first versions of analysis)
- Use of MeOH at very low temperatures (typically below 0°C)

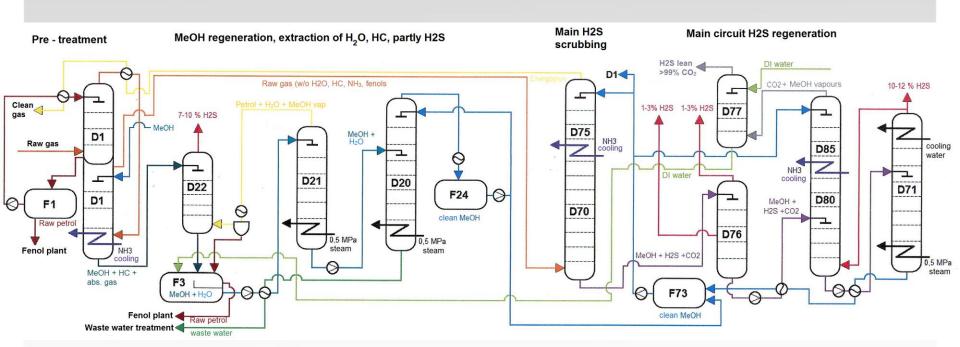
PRINCIPLE

- Absorption (counterflow absorber column)
- Desorption
 - Pressure swing (flash drum)
 - Temperature swing (distillation column)
- Higher solubility of H2S than CO2 → H2S must be scrubbed first
- Higher solubility at lower temperatures
- MeOH absorbs all H2O in gas necessary MeOH regeneration


Solubility of gases present in syngas in MeOH (Linde for Vřesová plant)

PRINCIPLE II

2 basic configurations from Lurgi and Linde

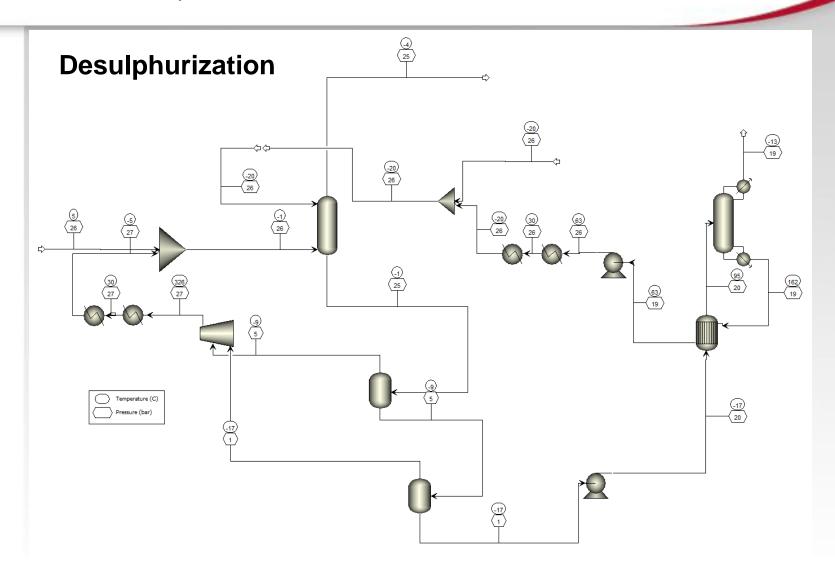


RECTISOL at VŘESOVÁ

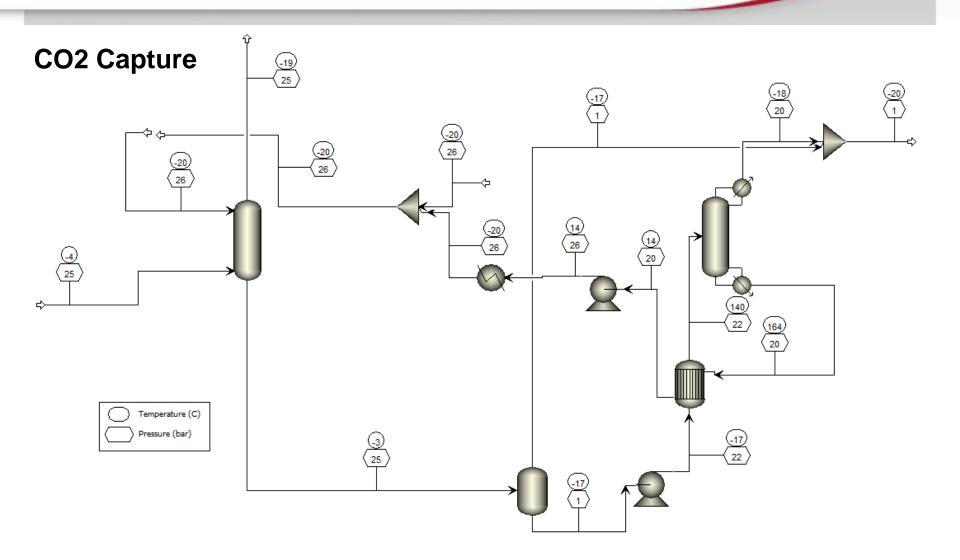
- MeOH at below zero temperatures ~ -20°C
- Necessary MeOH H2O regeneration
- Scrubbing of MeOH in produced gases (especially in CO2 stream)
- With H2S scrubbed also part of CO2 potential issue for captured amount

Simplified Rectisol scheme from Vřesová plant for only H2S scrubbing

ASPECTS OF CO2 CAPTURE BY RECTISOL


- CO2 scrubbed during desulphurisation
 - Signifficant amount, CO2 has over 90% in several H2S streams
 - Larger than reference case due to sour WGS (higher CO2 on syngas)
 - easily over 10% → possibilities for 90%+ capture limited
 - Unable to capture released to atmosphere after off-gas processing
 - Increasing H2S content in off-gas
 - Recirculation (modelled)
 - N2 stripping (questionable effect on CO2 capture rate)
- Residual H2S scrubbed with captured CO2
- Compared to Vřesová
 - Lower content of higher HC, not needed pre-wash
 - Requirements on products require more energy (but simler configuration)

MODELING


Modelled in AspenPlus

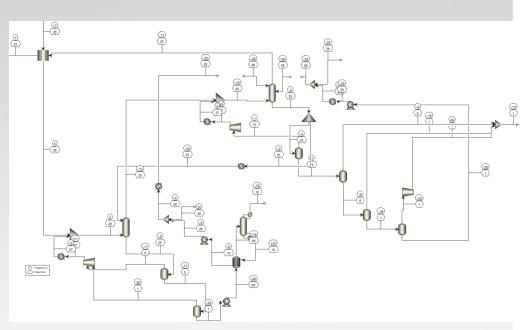
MODELING

PRELIMINARY RESULTS

Main streams composition

	Gas in	Gas interm	H2 out	H2S	Rec-H2S-1	Rec-H2S-01	CO2-01	CO2-02	CO2-out
Temperature [°C]	5,0	-3,6	-18,6	-13,5	-9,4	-17,2	-17,9	-16,8	-19,7
Pressure [bar]	26	25	25	19	5	1	20	1	1
Mole Frac [-]									
MEOH	0	1,38E-03	4,21E-04	1,06E-05	3,78E-03	9,96E-03	1,50E-04	0,01037	9,17E-03
CO2	0,387	0,379	0,027	0,807	0,969	0,954	0,998	0,979	0,981
H2S	3,15E-03	8,20E-06	1,92E-07	0,17428	0,011	0,030	1,96E-04	3,76E-05	5,63E-05
СО	9,21E-03	9,36E-03	0,015	1,37E-08	3,60E-04	3,21E-06	1,38E-06	2,66E-04	2,35E-04
N2	0,057	0,058	0,089	2,07E-06	5,71E-03	1,48E-04	7,54E-05	4,43E-03	3,92E-03
H2	0,535	0,544	0,856	1,73E-08	6,31E-03	1,56E-05	6,19E-06	4,55E-03	4,02E-03
AR	8,11E-03	8,24E-03	0,013	9,58E-07	1,20E-03	4,65E-05	2,34E-05	9,33E-04	8,26E-04
OTHERS	3,30E-04	2,67E-04	3,38E-05	0,019	2,09E-03	5,05E-03	1,44E-03	5,57E-04	6,61E-04

FURTHER WORK AND OPTIMIZATION



MeOH regeneration (from water, add pre-washing stage)

Interconnected configuration

MeOH from CO2 capture used in H2S capture, single distillation

Optimization of cooling, heating and heat recovery / regeneration (Current distillation column condensers require low temperature refrigeration)